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1.0 INTRODUCTION

Sea ice is a vital component of the global climate system because of its high albedo, its role
in limiting the exchange of heat, mass, and momentum between the ocean and atmosphere, and
its influence on oceanic water mass properties. Current interest in long−term sea ice changes
results from the observed increase of CO2 in the atmosphere. Because of expected feedback

effects, the anticipated global warming from an increase in CO2 was postulated to be amplified in

the polar regions (Budyko (1966). Some coupled ocean−atmosphere model results (e.g., Manabe
and Stoufer, 1994) suggest that a doubling of CO2 would lead to a significant thinning and

reduction in the extent of the Arctic sea ice cover, especially during the summer periods.

Sea ice with its snow cover very effectively insulates the ocean from the atmosphere,
because its heat conductivity is relatively low. For example, in winter, the heat flux in an open
lead exceeds by two orders of magnitude that through an adjacent thick ice cover (Badgley,
1966; Maykut, 1978). Sea ice also influences the oceanic and atmospheric circulations. During
ice growth, the cold saline dense water produced induces convection that tends to deepen the
mixed layer. Deep ocean convection also associated with this densification contributes to driving
the thermohaline circulation of the world’s ocean (Bryan et al., 1975). Furthermore, much of the
world’s deep and bottom water is believed to be formed at polar latitudes (Stommel, 1962;
Gordon, 1978; Killworth, 1983).

The effect of sea ice on the atmospheric circulation results from its high albedo,which
ranges from about 80% (Grenfell, 1983) to 98% (Vowinckel and Orvig, 1970), relative to that of
the open ocean (10% to 15%), and the sharp thermal and surface stress boundaries associated
with the edge of the ice pack. The abrupt change in energy exchange that takes place at the ice
margin can, under the appropriate atmospheric conditions, gives rise to violent weather systems
known as polar lows (Carleton, 1985; Businger and Reed, 1989; Gloersen et al., 1989). A more
recent study making use of an atmospheric general circulation model suggests an association
between heavy and light ice years and larger scale atmospheric circulation changes (Honda et
al., 1996).

A long−term, large−scale characterization of the global sea ice cover is needed for sea ice
trend studies and for climate model validation studies. The most consistent source of such data
continues to be satellite passive microwave sensors (Zwally et al., 1983; Parkinson et al., 1987;
Gloersen et al., 1992). Visible and infrared satellite data (e.g., AVHRR) can be used for large
scale and mesoscale studies but coverage is limited by persistent cloud cover. Detailed
characterization of sea ice under all weather conditions has recently been provided by the
ERS−1 and JERS−1 synthetic aperture radar (SAR) data, but only a small fraction of the entire
ice cover can be monitored at a time because of operational and data acquisition constraints and
a narrow swath width (100 km). Radarsat data with its wider swath (500 km) is an improvement
but adequate temporal resolution is still lacking. Such data are nonetheless useful for regional
studies and may provide information to improve the interpretation of passive microwave data.

The principal quantitative measure of the global sea ice cover is sea ice concentration. It is
this parameter that continues to be produced routinely from satellite passive microwave systems
for both global change research and operational requirements. In addition to sea ice
concentration, other sea ice parameters that are important to the accurate determination of
surface energy fluxes are snow depth on sea ice and the physical temperature of the ice. The
surface heat flux through sea ice critically depends on the depth of snow which is a very effective
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insulator. While snow fall is an externally prescribed quantity in sea ice models, there is
nevertheless a need for information on the distribution of snow depth on sea ice to permit
modelers to determine whether observed biases in simulated sea ice (e.g. thickness) can be
attributed to biases in the climatologically prescribed snowfall (Preller et al., 1992).

Another major source of uncertainty in energy balance calculations is ice surface
temperature. Direct measurement of ice surface temperature would be particularly valuable for
ice prediction models (Preller et al., 1992). While AVHRR ice surface temperature algorithms
have been developed (e.g., Comiso, 1983; Schluessel and Grassl, 1990), spatial and temporal
coverage is limited by the presence of clouds as noted earlier. For the seasonal sea ice cover,
the sea ice temperature measured by microwave radiometers represents the snow/ice interface
temperature and when combined with the snow depth measurement would considerably reduce
current uncertainties in polar energy budgets.

The AMSR system as configured will be a significant improvement over previous and current
passive microwave systems. The most obvious improvements are its finer spatial resolution and
its wider spectral range. This capability will allow an improved determination of our three
standard products: total sea ice concentration, snow depth on sea ice, and sea ice temperature.
The AMSR sea ice algorithm presented below will provide daily maps of sea ice concentration,
sea ice temperature, and snow depth.

2.0 OVERVIEW AND BACKGROUND INFORMATION

2.1 Experimental Objectives

The prime objectives of this document are (a) to describe and justify the standard and
special sea ice products that will be derived from AMSR; (b) to provide the theoretical basis of
the algorithms that will be used to generate these standard and special products; and (c) to
assess the accuracy of these products. The standard products are those sea ice products which
are deemed essential to meet the overall objectives of NASA’s MTPE. The special products are
of interest to the research community, but not sufficiently tested and validated to warrant their
classification as standard products. The standard and special products are listed in Table 1.
Accuracies will be estimated with the aid of a comprehensive validation program. This program
entails the comparison of the AMSR ice products with corresponding products derived from
visible and infrared satellite imagery, from spaceborne SAR, and from high−resolution passive
microwave imagery from aircraft underflights.

TABLE 1. AMSR Standard and Special Sea Ice Products.

________________________________________________

Standard Products: Sea Ice Concentration

Sea Ice Temperature

Snow Depth on Sea Ice

Special Products: Sea Ice Motion

Sea Ice Type

                                 Sea Ice Surface Class

    ________________________________________________



5

2.2 Historical Perspective

The first global view of sea ice was achieved in the early 1960s with the launch of
earth−viewing satellite sensors such as those aboard the Nimbus, Tiros, and Earth Resources
and Technology (ERTS, later, Landsat) satellites. Because these sensors operated in the visible
and infrared bands of the electromagnetic spectrum, they were limited to cloud−free and
well−illuminated regions only, making them incapable of providing the synoptic observations
needed for processes and climate studies. Microwave sensors, not limited by weather conditions
or light levels, are particularly well suited for monitoring sea ice, because of the strong contrast in
thermal microwave emission between areas of ice−free ocean and ice−covered waters.

The first passive microwave sensor used extensively for studying the global distribution of
sea ice was the Electrically Scanning Microwave Radiometer (ESMR) on board the NASA
Nimbus 5 satellite (Gloersen et al., 1974; Zwally et al., 1983). The single channel ESMR,
operating at 19.35 GHz, provided daily coverage of the polar regions and allowed for the first
time synoptic observations of sea ice concentration needed for undertaking a detailed study of
global sea ice variability. The ESMR sea ice algorithm was based on a linear relationship
between the radiometric brightness temperatures of ice−free water and consolidated sea ice.
Temperature variability effects were reduced using climatological data. At the ESMR frequency
the contrast between ice and water is ~100 K. Although the estimated accuracy was only 15%
(Comiso and Zwally, 1982), these data were used successfully to document sea ice changes in
both hemispheres (Zwally et al.,1983; Parkinson et al., 1987).

The Scanning Multichannel Microwave Radiometer (SMMR) was launched on the SeaSat
satellite in July 1978 and on the Nimbus−7 satellite in October 1978 (Gloersen et al. 1992). With
its multichannel capability, SMMR provided more information about the ice cover than ESMR.
Multichannel SMMR algorithms extended the calculation of ice concentration to include the
discrimination of two ice types, first−year and multiyear in the Arctic (Svendsen et al., 1983;
Cavalieri et al., 1984; Swift et al., 1985). A multichannel SMMR algorithm to obtain sea ice
concentration only was also developed (Comiso and Sullivan, 1986; Comiso, 1986). The various
algorithms take advantage of two or more channels to reduce errors associated with physical
temperature variability, emissivity anomalies, and weather effects.

In 1987, the first in a new series of passive microwave radiometers was launched as part of
the Defense Meteorological Satellite Program (DMSP). This sensor, called the Special Sensor
Microwave Imager (SSMI), operates at frequencies ranging from 19.4 GHz to 85.5 GHz. The
SSMI measures both horizontally and vertically polarized components at all frequencies except
at 22.2 GHz for which only a vertically polarized component is obtained. Using these data,
several new algorithm improvements have been made (e.g., Cavalieri, 1994; Comiso, 1995).

The AMSR sensor, which will have a wider range of frequencies and an improved spatial
resolution, should provide the basis for improving the current suite of sea ice algorithms and for
developing new hybrid algorithms.

2.3 AMSR Instrument Characteristics

The EOS PM−1 AMSR is a twelve channel, six frequency total power passive microwave
radiometer system. It measures vertically and horizontally polarized radiances at 6.925, 10.65,
18.7, 23.8, 36.5, and 89.0 GHz.
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The instrument, modified from the design used for the ADEOS−II AMSR, consists of an
offset parabolic reflector 1.6 m in diameter, fed by an array of six feedhorns. The AMSR rotates
continuously at 40 rpm about an axis parallel to the local spacecraft vertical. At an altitude of 705

km, it measures the upwelling scene brightness temperatures over an angular sector of + 61o

about the sub−satellite track, resulting in a swath width of 1445 km. During a period of 1.5
seconds the spacecraft sub−satellite point travels 10 km. Even though the instantaneous
field−of−view (IFOV) for each channel is different, active scene measurements are recorded at
equal intervals of 10 km (5 km for the 89 GHz channels) along the scan. The half−cone angle at

which the reflector is fixed is 47.4o which results in an Earth incidence angle of 55.0o. Table 2
lists the pertinent performance characteristics

Table 2. EOS PM−1 AMSR SENSOR PERFORMANCE CHARACTERISTICS 
______________________________________________________________________

CHARACTERISTICS                 CENTER FREQUENCIES (GHz) 

                                          6.9     10.7    18.7   23.8   36.5 89.0 
______________________________________________________________________

BANDWIDTH (MHz)         350      100     200    400   1000   3000

SENSITIVITY (K)        0.3      0.6    0.6    0.6    0.6  
1.1

IFOV (km x km)        76x44   49x28   28x16  31x18   14x8  6x4

SAMPLING RATE (km x km) 10x10   10x10   10x10  10x10  10x10 5x5

INTEGRATION TIME (ms)  2.6     2.6     2.6    2.6   2.6  1.3

MAIN BEAM EFFICIENCY (%) 95.3    95.0    96.3   96.4  95.3 96.0

BEAMWIDTH (degrees)      2.2     1.4     0.8    0.9    0.4  0.18 
______________________________________________________________________     

The radiometer calibration error budget, exclusive of antenna pattern correction effects, is
composed of three major contributors: warm load reference error, cold load reference error,
radiometer electronics nonlinearities and errors. An estimate of the warm load reference error is
~0.5 K, based on the RSS of the various components. The error in the cold reference
measurement is mainly produced by the error in coupling between the cold sky reflector and the
feedhorn. This is estimated to be ~0.5 K. The radiometer electronics nonlinearity results in an
error that can be estimated during the thermal vacuum calibration testing (on SSMI this error
was ~0.4 K). A source of error in the receiver electronics is the gain drift resulting from
temperature variations over one orbit. This error depends on the design of the receiver and
overall design of the sensor. The gain drift can be as much as ~0.24 K for a temperature variation
of less than 10 K over one orbit. Accounting for all errors, the total sensor bias error is 0.66 K at
100 K and changes with temperature to 0.68 K at 250 K.

3.0 ALGORITHM DESCRIPTION AND THEORETICAL BASIS

The proposed multichannel AMSR sea ice algorithm builds on our experience with the
Nimbus 7 SMMR and the DMSP SSMI sensors and on the expected configuration of the AMSR
sensor itself. The functional form of the AMSR sea ice concentration algorithm combines
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aspects of the SSMI version of the NASA Team sea ice algorithm (Cavalieri et al., 1992) and the
Bootstrap algorithm (Comiso, 1995). In some areas of the Arctic, the SSMI thin ice algorithm
(Cavalieri, 1994) will be used to improve the determination of ice concentration. The initial
algorithm output will be tested and checked for internal consistency and for consistency with ice
parameters derived from other sensors. The sea ice temperature algorithm is a modified version
of that used in Gloersen et al.(1992) and is part of the temperature independent Bootstrap
algorithm, whereas the snow depth algorithm is based on more recent work (Markus and
Cavalieri, 1997).

A block diagram illustrating the components of the algorithm for computing the standard
products of sea ice concentration, sea ice temperature, and snow cover on sea ice is shown in
Figure 1. The plan for obtaining sea ice concentration is illustrated in Figure 1a. Initially, sea ice
concentrations will be derived using both the NASA Team algorithm and a temperature
independent form of the Bootstrap algorithm currently under development (Figure 1b). A
difference map of the results is then generated to determine areas A of ice concentration
differences exceeding about 5%. The next step is to correct the NASA Team ice concentrations
for those areas A that satisfy a yet to be determined threshold using the temperature
independent Bootstrap algorithm, and in limited areas of the Arctic, using the thin ice algorithm
(Cavalieri, 1994). A similar threshold approach was used successfully in the application of the
thin ice algorithm to Arctic seasonal sea ice zones (SSIZs), where the threshold was defined in
terms of the NASA Team algorithm variables PR and GR. A quantitative comparison of the
NASA Team and Bootstrap algorithm results is presented in Comiso et al. (1997). The plan is to
generate validated hybrid concentrations that take advantage of the strengths of each of the two
algorithms.

Sea ice temperatures will be derived from the surface ice temperatures that are inferred
from the temperature corrected Bootstrap algorithm. A mixing formalism and the final ice
concentration value are used for each data element to separate contributions from the open
water (Figure 1b). The ice temperature product is thus basically the physical temperature of the
snow/ice interface in seasonal ice regions and the weighted−average temperature of the
freeboard portion of the ice in the Arctic multiyear ice regions. Snow depth over sea ice will be
derived from the enhanced ice concentrations and AMSR brightness temperatures. As indicated
in Figure 1c, snow depths will be calculated for the entire Antarctic sea ice pack and for the
Arctic only where the concentration of multiyear ice is less than 20%. The rationale for the
Arctic limitation is discussed in section 3.1.2.

3.1 Standard Products

The principal sea ice parameter derived from AMSR radiances is sea ice concentration. It
is this product that enables the spatial characterization of the sea ice cover and the calculation
of sea ice extent and area that are used in long−term trend analyses and processes studies.
The calculation of the two other standard products, ice temperature and snow depth on sea ice,
also requires sea ice concentration as input. All three products are important to the calculation
of the surface heat exchange.

3.1.1 Sea Ice Concentration

The two basic assumptions made in the development of the sea ice concentration algorithm
are (1) that the received radiation by the satellite sensor comes from three dominant polar ocean
surface types: two types of sea ice (A and B), and ice−free (open) water (W), and (2) that the
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AMSR SEA ICE CONCENTRATION ALGORITHM

Ingest Calibrated, Geolocated, QCed AMSR TBs

Compute initial ice concentrations using the
     NASA Team  and the temp.  independ. 
                     Bootstrap algorithms

Determine areas A of  ice concentration 
            differences exceeding 5%

 Correct the NASA Team ice concentrations for those  
areas A that satisfy a predetermined criterion using the 
 temperature  independent Bootstrap algorithm and in
 limited areas of the Arctic using the thin ice algorithm 

Enhanced ice concentration

Figure 1a.   Flow chart for the AMSR sea ice concentration algorithm.
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Figure 1b.  Flow chart for the Temperature Corrected Bootstrap Algorithm and physical ice 
temperature.
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Figure 1c.  Flow chart for the AMSR snow−depth on sea ice algorithm.
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atmospheric contribution is approximately constant. The selection of algorithm coefficients
(tie−points) is based on observed brightness temperatures which include an atmospheric
component. Later, weather filters are employed to eliminate spurious sea ice concentrations
over open ocean resulting from a varying atmospheric emission.

Using a linear mixing formulation, the received radiation expressed as a brightness
temperature is given by

TB = TBWCW + TBIACIA + TBIBCIB          (1)

where TBW, TBIA, and TBIB are the brightness temperatures of ice−free ocean, ice−type A, and

ice−type B, respectively. CW, CIA, and CIB are the corresponding fractions of each of the three

ocean surface components within the field−of−view of the instrument and add to unity. Equation
(1) is the fundamental equation that is used to develop the NASA Team algorithm. In the
northern hemisphere, the two dominant ice types are first−year (FY) ice and multiyear (MY) ice,
whereas in the southern hemisphere the two ice types are simply labeled A and B, because of
ambiguities in distinguishing between seasonal and perennial sea ice in the Antarctic. The
temperature corrected Bootstrap algorithm also uses equation (1), but assumes only two types
of surfaces, namely ice and water.

3.1.1.1 NASA Team Formulation

The physical basis for distinguishing among the three polar ocean components is best
described by considering the brightness temperature spectra of Arctic polar ocean surfaces
shown in Figure 2. Examination of this figure illustrates two important characteristics. First, the
difference between the vertically and horizontally polarized radiances is small for either ice type
(FY or MY) in comparison to that for the ocean. Second, the discrimination between ice types
increases with decreasing wavelength (increasing frequency). In particular, discrimination
between FY and MY ice is greater at 0.8 cm (37 GHz) than it is at 1.7 cm (18 GHz). These
characteristics are parameterized in terms of two independent variables, the polarization (PR)
and the spectral gradient ratio (GR), defined by:

PR(19) = (TB(19V)−TB(19H))/(TB(19V)+TB(19H))     (2)

GR(37V/19V) = (TB(37V)−TB(19V))/(TB(37V)+TB(19V))         (3)

These variables have been shown to have the same functional form as principal
components and differ only in that these variables are normalized (Rothrock et al., 1988). An
advantage of using normalized principal components is that they are less susceptible to
geophysical crosstalk. Another advantage of these variables is that they are largely independent
of ice temperature variations, which eliminates the problem of estimating ice temperature
variability both temporally (e.g., day−to−day and seasonal) and spatially (e.g., temperature
gradients across the Arctic basin).

Equation (1) is used with the definitions of PR and GR to solve for ice−type A and ice−type
B concentrations. The expressions for CIA and CIB are:

CIA = [ao + a1PR + a2GR + a3(PR)(GR)]/D       (4)

CIB = [bo + b1PR + b2GR + b3(PR)(GR)]/D       (5)
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Figure 2.    Microwave spectra of first−year and multiyear sea ice, and ice−free ocean for 
horizontal and vertical polarizations.  The plotted values represent the mean +1 standard 
deviation (reprinted from Gloersen et al., 1992). 
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where, D = co + c1PR + c2GR + c3(PR)(GR)     (6)

The total ice concentration CI is the sum of the two ice−type concentrations

CI = CIA + CIB                          (7)

The coefficients ai, bi, and ci (i = 0, 3) are functions of a set of nine TBs. These TBs, referred to

as algorithm tie−points, are observed radiances over areas of known ice−free ocean, and ice
types during winter for each of the three AMSR channels.

Figure 3.    Arctic monthly mean maps of total and multiyear sea ice concentration derived from 
DMSP SSMI radiances for March 1988.
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Examples of retrieved total and multiyear sea ice concentrations for the Arctic are illustrated
in Figure 3.

3.1.1.2 Temperature Corrected Bootstrap Formulation

The ice concentration, CI, corresponding to an observed brightness temperature, TB, can

be derived from the mixing formulation with all ice types combined and is given by:

C     =  (TB − TO)/(TI − TO)         (8)

where TO, and TI are reference brightness temperatures of open water and sea ice, respectively.

TO, TI, and TB all include contributions from the intervening atmosphere, as described in Zwally

et al. (1983). TI varies spatially because of spatial changes in the emissivity and temperature of

the ice, while TO is approximately constant for open water surfaces within the ice pack.

In the Bootstrap formulation (Comiso, 1995) TI and TO are determined with the aid of two

sets of channels: (a) 19 GHz and 37 GHz radiances both vertically polarized (called V1937); and
(b) vertically and horizontally polarized 37 GHz radiances (called HV37). Scatter plots using
each set of channels (Figure 4a and 4b) indicate that data points aboutAD are highly correlated
and correspond to consolidated ice regions. This has been confirmed by ship data as well as
aircraft data (e.g., Figure 11 of Comiso (1995)). For a given data point B, TI is inferred, and ice

concentration is determined from equation (8), or an equivalent formulation as described in
Comiso (1995).

The use of V1937 is desirable because it uses solely the vertical channels which are less
affected by layering and inhomogenuities in the ice (Matzler, 1984; Grenfell et al., 1994) than are
the horizontal channels. This set has been found to be most suitable in the Antarctic Region
(Comiso et al., 1984; Comiso and Sullivan, 1986) where snow cover is known to have a very
complex texture (Massom et al., 1996; Worby and Massom 1995). However, the V1937 set is
more sensitive to fluctuations in ice temperature than the HV37 set (Comiso, 1995). Although
spatial variations in surface ice temperature were observed in the Weddell Sea to be small
(standard deviation of about 2K), other studies show larger variability (Sturm et al., 1996) and
there are also regions where the surface may be considerably colder than average (e.g., thick ice
with little or no snow cover in the inner zone).

To correct for temperature effects on the V1937 set, we make use of snow/ice interface
temperatures that can be derived from the 6 GHz V−pol. channel. The effective emissivity of the
surface within each data element can be obtained from:

eB =   eICI + eO(1−CI)                (9)

where CI is obtained from equation 8, while eI and e0 are emissivities of ice and water,

respectively, which can be derived from the data and assumed constant. Unlike equation (8),
equation (9) is not exact but a sensitivity study indicates that the error is very small (<1%) and is
highest when the concentration is 50%. The physical temperature of each data element is then
given by

Tp  =  TB(6V)/eB(6V)                        (10)
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Figure 4.    (a) Scatter plot of 37H versus 37V SSMI monthly January 1992 data for the entire 
Arctic region; (b) scatter plot of 19V versus 37V SSMI monthly September 1992 dat for the entire 
Antarctic region; (c) simulated 37H versus 37V brightness temperatures for changes in surface 
ice temperatures randomly selected from 0 to 15K; (d)simulated 19V versus 37V brightness 
temperatures for changes in surface ice temperatures randomly selected from 0 to 15K; (e) 
simulated 37H versus 37V brightness temperatures for changes in surface ice temperatures 
randomly selected from 0 to 30K; (f) simulated 19V versus 37V brightness temperatures for 
changes in surface ice temperatures randomly selected from 0 to 30K.
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where TB(6V) is the observed brightness temperature of the surface at 6 GHz (vertical

polarization). The emissivity of the surface at 19 and 37 GHz can then be derived from

e(19V) = TB(19V)/Tp(19V)                       (11)

and

e(37V) = TB(37V)/Tp(37V)                        (12)

with the assumption that Tp(19V) and Tp(37V) are equivalent to Tp(6V). The ice concentration

can be inferred from these derived emissivities using a formulation similar to that described in
Comiso (1995). The use of emissivity instead of brightness temperature is justified by the
matching of reference data points of both consolidated ice (100% IC) and open water (0% IC).
As in Comiso (1995), the tie points for the emissivity of 100% ice can be calculated from

           e1I = (e1A−e1O−e2ASAD+e2OSOB)SOB/(SOB−SAD)+ e1O − SOBe2O (13)

e2I = (e1A−e1O−e2ASAD+e2OSOB)/(SOB−SAD)                         (14)

where SAD and SOB are slopes of the lines AD and OB, respectively, (e1A, e2A) represents any

point along the line AD, and (e1O, e2O) represents the open water reference brightness

temperature. The ice concentration for any data point B can be derived from the ratio of the
distances OB and OI given by the equation (see Figure 4):

 C = [{(e1B−e1O)2+(e2B−e2O)2}/{(e2I−e2O)2 + (e1I−e1O)2}]1/2 (15)

In the formulation, it is convenient to choose e2A =0 at point A along AD with e1A the resulting

offset. Additional details, including the determination of the line AD and the point O, are given in
Comiso (1995). Since the initial calculation of the emissivity at 6 GHz make use of ice
concentration that has not been temperature corrected, the emissivity is recalculated using the
more accurate result from equation (15) and using the same procedure, the ice concentration is
recalculated. The final value will be the estimate for the temperature corrected Bootstrap ice
concentration. Also, the final value of Tp is the estimate of the physical temperature within the

data element. (Figure 1b) The advantage of using emissivities instead of brightness temperature
is illustrated in Figure 5. The data points along AD in Figure 5a are the points that are in the
inner zone and have high ice concentrations as indicated earlier. When the same set of data are
plotted using emissivities, these points became more compact and better correlated as shown in
Figure 5b. The use of emissivity instead of brightness temperature thus improves the
determination of the ice concentration since the standard deviation along the consolidated ice
line (AD) is significantly better (a 33% improvement) when the former is used.

Ice concentration maps using the Team algorithm and this procedure on SMMR data
(September 15, 1979) when a 6 GHz channel was available are shown in Figure 6a and 6b,
respectively. The difference between the two is shown in Figure 6c while the surface
temperature for each pixel as derived using the 6 GHz data is shown in Figure 6d. The
difference map presented in Figure 6c shows the typical magnitude of the discrepancies between
the two algorithms and maps such as this will be used as guidelines for the implementation of
the threshold technique for the hybrid algorithm. The lack of validation data set makes it difficult
to assess accuracies. However, winter Landsat data were available on September 18, 1988.
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Figure 5.    Scatter plot of vertically polarized 18 GHz versus 37 GHz SSMI data using (a) 
brightness temperatures, and (b) emissivities, inferred with the use of 6 GHz data.

For this day, only SSMI data are available and there are no 6 GHz data to be used for correcting
the Bootstrap Algorithm. However, the effect of spatially varying temperature is simulated with
the use of a climatological average of ice temperature (from Gloersen et al., 1992) as was done
in Zwally et al. (1983). The emissivity is calculated in a similar manner as indicated earlier and
the ice concentration maps before and after the temperature correction is used are shown in
Figures 7a and 7b, respectively. The difference between the two is shown in Figure 7c and the
Landsat image at the location of the box in Figure 7a and 7b, is shown in Figure 7d. The ice
concentration from Landsat data show agreement with that from the temperature corrected
Bootstrap technique within 2%. The negative values in the coastline areas correspond to colder
regions in the temperature maps and indicates where the enhanced Bootstrap technique can
show substantial improvements. More extensive validation of the latter with Landsat images will
be implemented.

3.1.1.3 Correction for Thin Ice in Arctic Seasonal Sea Ice Zones

The NASA Team algorithm is capable of distinguishing among three Arctic Ocean surface
types: open water (OW), first−year (FY) ice, and multiyear (MY) ice. The problem of not being
able to discriminate among new, young and first−year ice leads to a negative bias in the retrieved
sea ice concentration (Cavalieri, 1994). To help understand how the algorithm misinterprets the
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Figure 6.    (a) Ice concentration map on September 15, 1979 using the PR−GR algorithm; and 
(b) Ice concentration map on September 15, 1979 uisng the temperature corrected bootstrap 
algorithm; (c) difference between (a) and (b); and (d) surface ice temperature map from the 6 
GHz channel on September 15, 1979 used in (b).
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using the temperature corrected Bootstrap algorithm; (c) difference between (a) and (b); and (d) 
Landsat data with in the rectangular box shown in (a) and (b).
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presence of new and young sea ice, reference is made to the Arctic PR−GR distributions for April
4, 1988 shown in Figure 8. The distributions presented are for (a) ice−free and ice−covered
oceans in the Northern Hemisphere; (b) the central Arctic region; and (c) the Bering Sea only.
The algorithm triangle with labeled vertices and lines of constant ice concentration at intervals of
20% is superimposed on each of the three distributions.

In Figure 8a, the cluster of points representing ice−free ocean as well as weather related
effects is located at the upper right vertex of the triangle labeled OW. The almost vertical cluster
of points between the two other vertices corresponds to FY and MY ice types of high
concentration. The cluster of points extending to the right of the FY ice vertex and having GR
values close to zero is associated with new and young ice types. The horizontal spread of
points in this cluster along a line nearly parallel to the PR direction depends on the age and
thickness of the new ice. The position of this new and young ice cluster relative to the algorithm
triangle (Figure 8a) explains why the algorithm underestimates ice concentrations in the
presence of these ice types and why false indications of MY ice are often found in areas of new
and young ice. At the right−hand end of this cluster (near the 40% isoline of concentration), the
algorithm interprets the corresponding PR and GR values as an ice cover of about 45%
concentration and of mostly MY ice.
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Figure 8.    PR−GR distributions for (a) the entire Arctic; (b) the central Arctic; and (c) the Bering 
Sea only. All for April 4, 1988 (after Cavalieri, 1994).
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For the central Arctic (Figure 8b), the cluster is almost vertical and has a relatively small
degree of scatter (approximately +10 percent) about the 100 percent ice concentration line. In
contrast, the distribution for just the Bering Sea region (Figure 8c) consists of points clustered
near the OW vertex and along the upper leg of the triangle (OW to FY). Points with GR values
close to zero form a nearly horizontal cluster which cuts into the algorithm triangle. The other
seasonal sea−ice zones contribute to the remaining portion of the totality of points shown in
Figure 8a.

The distribution of points in Figure 8c is characteristic of seasonal sea−ice zones where
there is little, if any, perennial ice and forms the basis of a new algorithm for determining the
distribution of new, young and first−year ice types. A representation of this algorithm is
illustrated in Figure 9 for the Bering Sea on April 4, 1988. The thin ice algorithm triangle is
defined by (PR, GR) values for OW, FY and NEW ice. The cluster of points shown in Figure 8b
for the central Arctic no doubt contains open water and thin ice, but cannot be resolved on
scales comparable to the resolution of current satellite radiometers. Thus, the use of this
algorithm is limited to seasonal sea ice zones and principally in the Bering Sea and similar
regions.

Most of the points in Figure 9 fall between the 80% and 100% ice−concentration contours,
indicating that this algorithm may provide an improved estimate of total ice concentration in
regions of new and young ice. The relatively few points falling below the lower leg of the triangle
are assigned concentrations of 100 percent. Their low GR values may result from volume
scattering by deep snow accumulated in areas of ridged ice or on shore−fast ice adjacent to the
coasts. A comparison of sea ice concentration maps for the Bering Sea for April 4 derived using
the NASA Team algorithm and the thin ice algorithm is illustrated in Figure 10. Comparison of
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Figure 9.    The thin ice algorithm is represented in (PR, GR) space by a triangle with vertices 
defined by open water (OW), first−year (FY), and new (NEW) ice points. The distribution of data 
points is for the Bering Sea on April 4, 1988 (after Cavalieri, 1994). 
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the two maps shows that the thin ice algorithm yields substantially higher ice concentrations in
the coastal polynya regions as indicated in the corresponding PR−GR plot (Figure 9). Higher ice
concentrations in these regions are consistent with a supervised principal component analysis of
DMSP SSM/I data which indicates OW concentrations of no more than 20−30% (Wensnahan et
al., 1993) and by an ice−type classification of AVHRR imagery which shows that there is only a
thin band of open water and new ice hugging the southern coasts of Alaska, Siberia, and St.
Lawrence Island (see Plate 2c in Massom and Comiso, 1994). The sea ice concentrations in the
southeast corner of the Bering Sea have not increased as much, suggesting that this is a low
concentration area.

3.1.1.4 Correction for Weather Effects Over Ice−Free Ocean

With regard to atmospheric variability, the AMSR sea ice algorithm will employ a pair of
weather filters to help eliminate spurious sea ice concentrations over ice−free ocean (Cavalieri et
al., 1995). The filters are based on threshold values for GR(37/19) and GR(22/19). Ice
concentrations for image pixels with GR(37/19) values greater than 0.05 and GR(22/19) values
greater than 0.045 are set to zero. This technique was originally used with GR(37/18) for
eliminating weather effects in sea ice concentration maps derived from SMMR data (Gloersen
and Cavalieri, 1986), and the addition of the second filter (GR(22/19)) was needed for the SSM/I
sea ice concentration maps (Cavalieri et al., 1995). An alternative weather filter has been
described by Comiso (1995) using a set of thresholds: one derived from the 19 GHz and 37 GHz
data and another using the difference of 22 GHz and 19 GHz data at vertical polarization. The
strength of the latter is a consistent determination of the open water tie point that leads to a
consistent ice concentration threshold for the weather filter. When used independently, the two
filters do not completely remove the spurious sea ice concentrations over ice−free oceans. The

Figure 10.   Bering Sea ice concentration maps for April 4, 1988, from (a) the NASA Team 
algorithm and (b) the thin ice algorithm.
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two techniques will be combined to enhance overall performance.

3.1.2 Sea Ice Temperature

Equation 10 provides the basis for calculating the temperature of the emitting surface. A
map of emitting surface temperatures as inferred from equation 10 is shown in Figure 6d. The
physical temperature of the ice component only, TI, at the snow/ice interface, can be calculated

using a mixing formulation and the derived ice concentration as done by Gloersen et al (1992).
The same quantity can also be inferred directly from the equation:

TI = (TB − TO)/C + TO (16)

where TB and TO are the brightness temperatures of the data point and that of open water at 6

GHz. It is assumed that C is known. The two techniques will be used together for consistency
checks.

The values obtained from SMMR using this method have been compared with results from
the Temperature Humidity Infrared Radiometer (THIR) which measures surface temperature
(Comiso, 1983). The surface temperature (skin depth) which is measured by THIR can be
substantially different from the ice temperature which is measured by SMMR (or AMSR). To
convert the THIR values to snow/ice interface values, we use a regression model based on field
measurements (Comiso et al., 1989). The average values from THIR and SMMR were
comparable (within 5K in much of the Antarctic region(see Figure 11)). However, while the THIR
results show a monotonic progression of increasing temperatures from the continent to the ice
edge, the coldest temperatures from SMMR were in the middle of the ice pack. This may have
been caused partly by spatial variations in snow cover which were not taken into account in the
conversion algorithm for the THIR data. More extensive validation of the resulting temperatures
will be made. However, it is encouraging that the SMMR temperature appears to improve the
distribution of consolidated ice in the scatter plots.

3.1.3 Snow Depth on Sea Ice

Although surface and aircraft observations suggest that the 85 GHz data may be useful for
developing a snow depth algorithm (Grenfell, 1986; Cavalieri et al., 1986; Comiso et al., 1989),
comparative analyses of in situ snow depth measurements with nearly coincident SSMI
observations at 85 GHz show that this is not the case. We attribute this to the sensitivity of the
85 GHz channels to the variability of the intervening atmosphere even over fairly consolidated
sea ice (Markus and Cavalieri, 1996). Current algorithms to derive snow depth over land use the
difference between the brightness temperatures at 19 GHz and 37 GHz both at horizontal
polarization (Kunzi et al., 1982; Chang et al., 1987). This work suggests that these channels
may also be useful for developing a snow−depth algorithm for sea ice. Grenfell and Comiso
(1986) measured brightness temperatures at frequencies between 10 and 37 GHz before and
after a snowfall on saline, 3.5 cm thin ice. The largest effect was seen at the 37 GHz H−pol.
where the emissivity was reduced from about 0.76 for bare ice to 0.59 after a 4.5 cm snowfall.
The emissivity difference between bare ice and snow−covered ice at 19 GHz H−pol., 19 GHz
V−pol., and at 37 GHz V−pol. was about 0.04.

The snow depth algorithm starts with the linearized radiative tranfer equation, used above
for the sea ice concentration algorithms, where measured brightness temperature at frequency ν
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Figure 11.   (a) Ice temperature data derived from the 6 GHz channel and (b) Ice temperature 
inferred from the THIR surface temperature data.
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and polarization component p, TB(ν,p), consists of a mix of brightness temperatures for open
water TBW(ν,p) and sea ice TBI(ν,p)

TB(ν,p) = CTBI(ν,p) + (1−C)TBW(ν,p) (17)

where C is the ice concentration. The value of C is computed using the procedure discussed in
the previous section. The open water brightness temperature TBW is an average value over the

open ocean regions for each channel and is assumed to be constant. Because we are only
interested in changes of brightness temperature resulting from changes in snow cover on sea
ice, open water is excluded from the signal. From this equation TBI is calculated and used later

in the snow algorithm. Changes in TBI are assumed to reflect changes in snow depth.

Next, temporally coincident in situ snow−depth and SSMI measurements were used to
derive a linear relationship between snow−depth and SSMI observations. The specific data sets
used in the analysis are given in Markus and Cavalieri (1996). The in situ data represent a wide
range of regions and seasons in the Antarctic. Nonetheless, the areal coverage of these surface

measurements is still small compared to an area of about 625 km2 for a single SSMI image pixel.
The actual snow depth variability over an SSMI pixel is uncertain. Different combinations of
channels for TBI were tried in the regression. Combinations using the 85 GHz channels resulted

in average differences that were twice as large (approx 13 cm) as those using the 19 and 37 GHz
combination (7 cm). The use of GR (H). or GR (V). gave better results than the unnormalized
difference. While GR (H). and GR (V). gave similar average differences, we decided to use the
horizontal channels because of previous work indicating that these channels were particularly
sensitive to snow cover variability (Kunzi et al., 1982; Grenfell and Comiso, 1986; Chang et al.,
1987). It is noteworthy that these channels have already proven useful in previously derived land
snow algorithms and that the vertically polarized spectral gradient ratio is known to be influenced
by snow cover on sea ice (Cavalieri et al., 1991). Fig. 12 shows a scatter plot of measured snow
depth versus GRI(H), where GRI (H) is defined by:

GRI(H) = (TBI(37H)−TBI(19H))/(TBI(37H)+TBI(19H)) (18)

Besides the expected scatter a clear linear relation between GRI(H) and snow depths can be

seen. Furthermore, the relationship is consistent for all four campaigns although they cover
different regions and seasons. Also the range of snow depths is very different. Measurements
from Jeffries lie between 0 and 30 cm, whereas the measurements from Ackley range from 40 to
70 cm. An interesting feature can be seen in the data set of Worby and Massom (1995). Two
separate linear clusters of points labeled by empty boxes and boxes with crosses can be
distinguished. The line with higher GRI(H) values (boxes with crosses) are associated with

higher surface air temperatures between 0 and −6C. This higher GRI(H) signature may result

from wet snow or snow having larger grains, which reduces the scattering at one frequency
relative to the other (Chang et al., 1976), but the amount of data is too small to give a clear
relationship between temperature and passive microwave signal. The selected regression fit
does not include these points. The linear regression fit is given by

hs=1.5−953*GRI(H) (19)
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and is plotted in Figure 12. The brightness temperatures for open water at the 19 and 37 GHz
horizontally polarized components are 106.8 K and 139.3 K respectively. The complete
algorithm combining equations (17), (18), and (19) can be written explicitly as

hs=1.5−953*(TB(37H)−TB(19H)−32.5(1−C))/(TB(37H)+TB(19H)−246.1(1−C)) (20)

The standard error of estimate about the linear regression line is 7 cm. Using this algorithm,
monthly mean Antarctic snow depths were calculated using seven years (1988−1994) of DMSP
SSMI data and are presented in Figure 13.

In the Arctic the retrieval of snow depth is complicated by the presence of multiyear ice
which has a signature similar to the snow cover. Both multiyear ice and deep snow result in
more negative values for GR. Until we are able to discriminate between variations in multiyear
ice and variations in snow depth, snow depth will only be retrieved in regions where the multiyear
ice concentration is less than 20% (false indications of MY ice of up to 20% have been observed
in SSIZs). Additional channels and greater spatial resolution provided by AMSR may help in this
regard. Cross comparisons between SSMI and ADEOS−II AMSR brightness temperatures

Figure 12.   SSMI GRHice versus in situ snow depth measurements (after Markus and Cavalieri, 
1997).



2 7

Figure 13. Mean monthly Antarctic snow depths based on seven years of DMSP SSMI data.
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should help us tune the algorithm coefficients for the Antarctic and in the Arctic SSIZs.

3.2 Special Products

3.2.1 Sea Ice Motion

A new method of time−varying signal analysis, called the Wavelet Transform, has been used
for image processing applications at NASA/GSFC during the past three years (Liu et al., 1995;
Peng et al., 1995). Basically, wavelet transforms are analogous to Fourier transforms, but are
localized both in frequency and time. Wavelet analysis has been recently applied to SSMI 85
GHz radiance maps to obtain daily sea ice drift information for both the northern and southern
polar regions (Liu et al.,1996). This technique provides improved spatial coverage over the
existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing data
from satellite synthetic aperture radars.

The method utilizes a two−dimensional Gaussian wavelet as an edge detector to identify ice
features in SSMI imagery. These features are then tracked from day to day. The use of this
technique has been demonstrated through a comparison with ice displacements derived from
Arctic and Antarctic drifting buoy data. Application of this technique to Arctic SSMI 85 GHz
radiances for December 12, 1992 results in the ice displacement map shown in Figure 14a. The
white arrows in the figure represent the ice drift computed from feature displacements from
December 11 to December 13, 1992. Examination of the figure shows two well−known Arctic
ice−drift features: the Beaufort Gyre and the Transpolar Drift Stream. The dark arrows indicate
the corresponding ice displacements computed from ice buoy data also from December 11 to
December 13, 1992 and are consistent with both the direction and magnitude of the white
arrows. The technique was also applied to data for mid January 1993. The result is shown in
Figure 14b. A comparison of Figures 13a and 13b shows a remarkable change in the ice drift
pattern. The Beaufort Sea ice drift is now counter−clockwise as is the whole circulation pattern
of the Arctic Basin. Again a comparison with the Arctic Ocean buoy data (dark arrows) shows
good overall agreement.

Further development of this technique for use with passive microwave data is needed to
optimize its use for extracting ice drift information. Comparisons with other techniques would
also be useful. Comparison data sets for assessing the present technique include Arctic and
Antarctic buoys, AVHRR−derived ice motion, and output from the RADARSAT Geophysical
Processing System. Based on this preliminary assessment, we anticipate that wavelet analysis
of AMSR imagery will help to improve our current knowledge of sea ice drift and related
processes for both polar regions. This wavelet analysis procedure is robust and can make a
major contribution to the understanding of ice drift over large areas at relatively high temporal
resolutions. This new source of ice drift data offers a potential solution to the problem of
inadequate temporal sampling. Pairs of daily AMSR images can provide ice displacements every
day greatly increasing the temporal sampling.

3.2.2 Arctic Sea Ice Types

In the Arctic we obtain first−year and multiyear ice concentrations from Equations (4) and
(5) respectively. Maps of multiyear ice concentration (CMY) and a discussion of the accuracy of
its retrieval is given in Cavalieri et al. (1991) and Gloersen et al. (1992). A map of multiyear sea
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ice concentration is illustrated in Figure 3. In Arctic seasonal sea ice zones, the ice types that
are present consist of first−year and younger types. An algorithm for mapping new, young, and
first−year sea ice distributions has been developed (Cavalieri, 1994), but validation has been
limited to the Bering Sea. The variation of PR(19) with ice type serves as the basis for mapping
the ice types. A nomogram (not shown) that relates the PR, calculated with the 19−GHz SSMI
channels, and the corrected total ice concentrations obtained from the thin ice algorithm, is used
to determine ice type. The ice type distribution for the Bering Sea derived using this method is
compared with an AVHRR−derived distribution in Figure 15. For the AMSR, once the enhanced
total sea ice concentration is calculated, a similar the nomogram will provide an estimate of the
ice type. The exact range of PR for each ice type is still uncertain, but the values used here are
in reasonable agreement with the field observations.

3.2.3 Sea Ice Surface Classes

Another parameter of interest is a classification of the ice cover in terms of regional surface
classes which are sometimes referred to as ice regimes (or zones). Different ice regimes may be
associated with physical boundaries such as between the outer and inner zones, between
seasonal and perennial zones, and between divergence and convergence zones. The outer
zone, which includes the marginal ice zone, is perhaps the easiest to identify in the passive
microwave data because of the marked contrast in emissivity between the ocean and ice
covered regions at some frequencies. It is also characterized as the region where loose
pancakes are located and where the effect of waves dominate. The inner zone, on the other

Figure 15.   (a) NOAA AVHRR (channel 2) image of St. Lawrence Island  and vicinity, (b) 
DMSP SSMI ice type map.  All for April 4, 1988 (after Cavalieri, 1994).
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hand, is the region where the ice cover is practically a continuous sheet of ice except where
there are leads and polynyas. In the inner zone, there can be a divergence zone in which large
number of leads are formed or a convergence zone where extensive rafting and ridging occur.
Also, within the pack there are perennial zones which are areas where icefloes survive the
summer. Such zones may have different signatures in different areas depending on age and
extent of deformity.

Cluster analysis of the multichannel passive microwave data (SMMR and SSMI) have
indicated that data points from the same ice regime tend to cluster together, suggesting that
they are radiometrically distinct. An unsupervised cluster analysis software, called "Isoclass",
has been used to identify and separate these radiometrically distinct clusters (Comiso, 1990;
Comiso 1996). The general technique was developed by several groups (Ball and Hall, 1967;
Kan, 1973; Wharton and Lu, 1987) leading to the Land Analysis System (LAS) and has been
implemented for general remote sensing applications by some commercial software companies
(e.g., PCI Remote Sensing Corp.).

Details about the current technique as applied to SSMI data, including refinements using a
neural network system, are discussed in Comiso (1996). Ten different classes including open
water have been identified. To illustrate the effectiveness of the classification, weekly cluster
maps from autumn (October 1993) through mid−winter (January 1994) are shown in Figure
332a. Our interpretation of the color code representing each radiometrically distinct cluster is as
follows: A for open water, B and C for new or loose pancake ice mainly in the marginal ice zones,
D for young ice, E and F for first year ice, and G, H, I, and J for multiyear ice. Class F may be
partly multiyear ice but is believed to be primarily first year ice with thick snow cover. The
cluster maps show patterns in the inner zone that are generally stable and similar to
characteristic distribution of ice floes based on buoy data by Colony and Thorndike (1985). The
time development pattern in the seasonal region and the marginal ice zones also appear
consistent with that expected during the period. In this region, some transformations from one
class to another occur as new ice (B and C cluster) forms and turns into young ice (D cluster)
which then turns into first year ice (E or F cluster) in a matter of several days. The progression of
this sequence can be monitored with the weekly cluster maps. The maps in Figure 15 indicate
that much of the changes in the Arctic cover during winter is primarily due to ice growth. The
areal cover of the marginal ice zone is estimated to be almost constant indicating that the
amount of ice in the ice margins does not change much although the ice edges change in
location during the season. Changes are thus primarily due to increases in young and first year
ice cover.

Changes in shape and location of the various surfaces during the season are apparent. The
general movement is consistent with forcings associated with average wind directions and
movements of the Arctic gyres. In a sense, the movements of basic ice regimes provide a means
to quantify the large scale dynamics of the Arctic and other regions. The maps also provide a
means to evaluate how the various regimes changes from one year to another. These maps
can thus be very useful for mass balance and thickness distribution studies and for testing large
scale ice models.

3.3 Uncertainty Estimates

In the following sections we will discuss estimates of uncertainties based on previous in situ
and validation studies in limited areas and time periods for the NASA Team and Bootstrap
algorithms separately. The results of sensitivity studies are also presented. Our current
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estimates will be updated after a validation study of the AMSR hybrid algorithm has been
implemented using simulated and real AMSR data.

3.3.1 Sea Ice Concentration

A NASA sea ice validation program for the NASA Team algorithm using DMSP SSMI data
was initiated in 1987 and was completed in 1991. Results of the SSMI Sea Ice Validation
Program have been published in a final report (Cavalieri, 1992) and in three journal publications
(Cavalieri, 1991; Cavalieri et al., 1991; Steffen and Schweiger, 1991). Validation of the SSMI sea
ice products centered on comparative analyses of multisensor satellite and aircraft data sets
including LANDSAT MSS and NOAA AVHRR; aircraft sensors included C−, L−, and P−band
SAR, a Ka−band scanning radiometer, a fixed−beam multichannel radiometer, and aerial
cameras. The results from the Landsat comparisons, which covered all seasons and both
hemispheres, showed that, on average, the difference between the NASA Team algorithm using
SSMI data and the Landsat derived ice concentrations was −3.6%+6.6% for winter months,
whereas for early spring in the Amundsen Sea the result was 1.3%+3.6%.

The physical basis of the Bootstrap algorithm has been confirmed using ground based
radiometer experiments in the Antarctic and in controlled experiments at the Cold Regions
Research Laboratory (Comiso et al., 1989; Grenfell et al., 1994; Grenfell and Comiso; 1986).
Comparative studies with aircraft, SAR, Landsat, and Helicopter data have also been made
indicating consistencies generally within 5% in winter and higher in the summer, and confirming
validity of the assumptions (Comiso et al., 1984; Comiso, 1986; Comiso et al., 1991; Comiso and
Kwok, 1996).

Monthly sea ice concentration maps derived from the NASA Team and the Bootstrap
algorithms have been analyzed and compared for an entire year in Comiso et al. (1997). The
AMSR algorithm is a hybrid algorithm making use of both the NASA Team algorithm and an
enhanced Bootstrap algorithm, which takes advantage of the 6 GHz AMSR channel to minimize
effects resulting from spatial changes in ice temperature.

3.3.1.1 Physical Temperature Variations

In the NASA Team algorithm, the derived ice concentrations are, to first order, independent
of spatial and temporal variations in ice temperature through the use of ratios of brightness
temperatures, PR and GR. The potential sensitivity of GR to ice temperature variations has
been discussed elsewhere and is not expected to be a problem (Gloersen et al., 1992; Comiso et
al., 1997).

In the Bootstrap algorithm, the use of the HV37 set of channels (for concentrations >90%)
helps reduce the error resulting from spatial changes in the snow/ice interface temperature in the
retrieval of ice concentration. In the HV37 scatter plot, the slope is about 1.0 for consolidated ice
data. Thus, changes in physical temperature cause almost equal changes in brightness
temperature for both polarized components, with the result that data points move almost along
the line AD (Figure 4). Sensitivity to random changes in ice temperature of 15K and 30K are
shown in Figures 4c and 4e, respectively. These plots indicate that even with large spatial
variations in snow/ice interface temperature in the perennial ice pack of the Arctic region in
winter, the effect on the accuracy in the determination of ice concentration is very small.

In the Antarctic region and part of the seasonal regions in the Arctic where the V1937 set is
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utilized, the effects of changes in the surface temperature are not as well taken into account
because the slope of the reference line, AD, is about 0.47 to 0.62, compared to near 1.0 for the
HV37 set. The difference in slope is due mainly to different volume scattering effects at different
frequencies. The scatter plot shown in Figure 4b shows greater variability of data points along
the consolidated ice cluster (i.e., AD) than that of Figure 4a. The scatter of data points along AD
is due to the spatial variabilities in both snow/ice interface temperature and in emissivity.
Deviations in ice concentration from 100% due to the presence of leads in the region are also
reflected in this variability. Sensitivity to random changes in snow/ice temperatures of 15K and
30K are simulated and shown in Figures 4d and 4f, respectively, for the V1937 set. These latter
plots indicate that the effect of changes in snow/ice surface temperatures of these magnitudes
may indeed be large.

A sensitivity analysis using the HV37 set of channels results in a 0.05% change in ice
concentration per Kelvin change in physical temperature. Using the V1937 set of channels, the
sensitivity is about 0.9%/K in the Antarctic, whereas in the Arctic the corresponding value is
0.84%/K. With the enhanced Bootstrap Algorithm, which makes use of emissivity instead of
brightness temperature data, such errors are expected to be considerably reduced. However,
significant errors are expected at boundaries, especially in the Marginal Ice zone and the coastal
boundaries where the matching of the footprints from different channels are critical because of
highly contrasting emissivities. At the ice edge, the spatial changes in surface temperature are
expected to be small, because both the ice temperature as well as the sea surface temperature
are likely to be close to 271 K.

3.3.1.2 Ice emissivity variations

For the purpose of comparing the sensitivity of each algorithm to potential variations in
surface emissivity, the brightness temperature for the channels used by each algorithm was
varied by +1 K and the ice concentration was computed. The results are presented in Comiso et
al. (1997) for both the Bootstrap and Team algorithms. Under conditions of 100% ice cover, the
Bootstrap algorithm shows a sensitivity ranging from 1.7% to 2.2% depending on hemisphere,
while the Team algorithm sensitivity is 1.8% for both hemispheres. For a 50% ice cover, the
Bootstrap algorithm yields a sensitivity ranging from 0.8% to 1.1% and the Team algorithm
sensitivity is 1.2%. Based on this study, the differences in sensitivity to emissivity variations
between the two algorithms are not significant.

The horizontally polarized channels may be more sensitive to snow structure and other
surface effects than the vertically polarized channels as has been reported by Matzler et al.,
(1984) from surface observations. Further research is needed to determine if this effect is
observed from a satellite platform and will be an integral part of the validation study.

3.3.2 Sea ice temperature

The brightness temperature distribution at 6 GHz in areas where the ice concentration is
greater than 95% in the Arctic and the Antarctic have been observed to have standard
deviations of 2.8K and 3.0K, respectively. The distribution includes effects resulting from spatial
variations in temperature and emissivity. For a typical brightness temperature of 250 K and ice
temperature of 260 K, the emissivity would be 0.96. Since the observed fluctuations in snow/ice
interface temperature is about 2.5 K (Comiso et al., 1989), the standard deviation of the
emissivity is about 6. If we assume that the uncertainty in the emissivity of ice is 0.6% and the
uncertainty in the brightness temperature is 1K, the error in the determination of the physical
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temperature of near 100% ice would be 0.72% of the physical temperature (typically about 2K).

In areas where the fraction of open water is significant, the error becomes larger, especially
because the emissivity has to be calculated using equation 9, which provides only an
approximate value. Incorporating the error in this equation, a typical error in the emissivity is
0.86%. Again, by assuming that the uncertainty in the brightness temperature is 1K, the error in
the determination of the physical temperature at 50% ice concentration would be .95% of the
physical temperature (about 2.5K).

Although biases in the calibration contributes to additional error, this will be minimized by
using the satellite data (in conjunction with in situ measurements) to obtain estimates of the
effective emissivity near 100% ice concentration. Also, relatively large footprints causes
uncertainties near the boundaries (i.e., sea ice and open ocean, and sea ice and land).
Furthermore, the temperature represents that of the snow ice interface in the seasonal region
while it represents a thicker layer (i.e., above the freeboard) in the perennial ice region.

3.3.3 Snow depth on sea ice

Input parameters to the snow algorithm are the brightness temperature of 19 GHz and 37
GHz both at horizontal polarization and the ice concentration. The sensitivity of the snow depth
retrievals to ice concentration variability was investigated as follows. We took a sample data set
of brightness temperatures from actual data containing over 30,000 pixels and introduced a trial
error in ice concentration. The results indicate that the snow depth is sensitive to errors in ice
concentration. Except for ice concentrations of 20% or less, the sensitivity is below 1 cm/% with
a minimum at 50%. The greater sensitivity at concentrations of 20% and less might result from
the greater influence of weather effects in regions with low ice concentration. We therefore limit
the allowable ice concentration to the range between 20% and 100%. If the ice concentration is
below 20% the snow depth is set to 0 cm. We conclude that errors in ice concentration have
little effect on the snow depth estimate.

Gloersen and Campbell (1988) have observed in airborne observations, and Maslanik (1992)
has shown in a theoretical study of weather effects on ice concentration retrievals, that at higher
ice concentrations weather effects increase GR whereas PR is less affected. This greater effect
on GR might also be reflected in the snow depth calculations. A quantitative estimate of this
error needs to be computed

Grain size variability will affect the GRIH and lead to errors in the calculation of snow depth.

In a theoretical study of the effect of snow grain size on microwave emission, Chang et al.
(1976) show that at 19 GHz even a small decrease in grain size from about 2 mm to 0.1 mm will
greatly increase the emitted brightness temperature for snow depths greater than 20 cm. This
sensitivity is even greater at 37 GHz for grain sizes less than 1 mm. Given a mean grain size of
1.7 mm for snow cover on Antarctic sea ice (Worby and Massom, 1995), the brightness
temperature at 19 GHz TB(19) will be much more susceptible to grain size variability than the

brightness temperature at 37 GHz TB(37). Higher values of TB(19) relative to TB(37) will result

in a GR decrease and thus in an overestimate of snow depth. Conversely, larger than average
grain sizes will lower TB(19) values relative to TB(37) resulting in an underestimate of snow

depth. Also the grain size of newly fallen snow increases with time (Lohanick, 1993). Older snow
will lead to an underestimate of snow depth, whereas new snow depth will be overestimated.
Although variation in grain size can cause changes in brightness temperature of more than 50 K,
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the importance may be reduced because of large−scale averaging. On the other hand,
Josberger et al. (1996) have shown significant interannual variability of average grain size.

3.3.4 Special Products

Sea Ice Motion

A comparison of ice displacements determined by the wavelet transform technique with
those determined from Arctic Ocean ice buoys for December 12, 1992 (Figure 14a) provided a
measure of accuracy. Ice velocities of wavelet derived features within 8 km of 27 buoys were
determined. The ice speed differences between the ice features and the 27 buoys have a mean
value of 3.9 cm/s with a standard deviation of 2.6 cm/s. The direction differences have a mean

value of 27.5o with a standard deviation of 25.9o. For the January 1993 example (Figure 14b),
the ice speed differences between the wavelet derived features and 24 buoys has a mean value
of 2.7 cm/s with a standard deviation of 2.9 cm/s. The direction differences have a mean value of

27.0o with a standard deviation of 18.0o. Similar results are obtained for the Antarctic (Liu et al.,
1996). The accuracy of this technique is only limited by the persistence of the features and by
the spatial resolution of the sensor. For example, a feature displaced 12.5 km (the SSMI grid
spacing for 85 GHz) over 2 days will have a computed speed of 6.25 km/day (7.2 cm/s). In this
case, the uncertainty in the estimate is 3.6 cm/s which agrees with the quantitative estimates of
the differences between the wavelet derived features and buoys in given above.

Arctic Sea Ice Types

The uncertainty in CMY, estimated to be about 11% (Cavalieri et al., 1991), is considerably

larger than the estimate for total sea ice concentration. False indications of multiyear ice of up
to 20% have been observed in seasonal sea ice zones. Nonetheless, CMY is considered useful

for sea ice model validation studies. In a study of model− and satellite−derived multiyear ice
concentrations, Walsh and Zwally (1990) show that simulated multiyear ice concentrations are
slightly higher than the satellite−derived concentrations, but the total coverage of the simulated
multiyear ice agrees well with the satellite−derived coverage. They show that both the simulated
and satellite−derived coverages in the early 1980s show large interannual variations that
represent potentially large perturbations in the mass balance of Arctic pack ice. There is also
some indication that the wintertime coverage of multiyear ice area in the Beaufort Sea
foreshadows the severity of the subsequent summer ice season (Walsh and Zwally, 1990).

In seasonal sea ice zones, the distribution of new, young, and first−year sea ice types
derived from the thin ice algorithm presented in section 3.1.4.2 was validated for the Bering Sea
through a comparison with analyzed AVHRR imagery (Cavalieri, 1994). The results of this
validation indicated that the SSMI and AVHRR ice type maps agreed in 80% of the cases on
average with 99% confidence that the agreement does not arise by chance (Cavalieri, 1994).
Further validation studies are required in other Arctic SSIZs.

Sea Ice Surface Classes

The classification of polar surfaces based on the clustering of brightness temperatures (or
emissivities) in a multidimensional parameter space has been shown to provide a coherent
represention of the ice cover from growth period to mid winter period. The outer zone is usually
represented by three clusters that correspond to three stages in the development of ice in the
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marginal ice zone (e.g., from grease ice to pancake ice to young ice, or thicker pancake ice).
Beyond the outer zone are first year ice which may be deformed or undeformed and may have
snow cover of different thicknesses, granularities, and/or layering history. Two classes of first
year ice are identified based on the two most dominant types of surfaces in the region. Also,
three classes are identified in the perennial ice region. One corresponds to second year ice
which has been observed to have emissivities different from those of older multiyear ice types.
The second one may be relatively undeformed third and fourth year ice types, while the third may
correspond to very old and highly deformed multiyear ice types.

The time series shown in Figure 16 provides a means to observe the validity of the
classifications in most of the seasonal regions. The stability of the classification in the perennial
ice region during winter also indicates that radiometrically different surfaces features are
identified. The higher resolution and wider frequency range of the AMSR, compared to those of
SSMI, will improve ability to discriminate the different surfaces. However, further validation, some
of which is currently in progress (e.g., Massom et al., 1996), is required to establish accuracy.
The statistical error (random component) in the estimate of the area of most of the ice classes is

Figure 16.   Weekly ice cluster maps showing the location of clusters A through J (see text) in the 
Arctic region from October 1993 through January 1994.  The week number is based on having 52 
weeks a year.
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Arctic Weekly Ice Classes: Oct. 1993 − Jan. 1994
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about 2%. The systematic error is expectied to be greater but is difficult to establish before
AMSR data are available.

3.4 Practical Considerations

3.4.1 Numerical Computation Considerations

Both the NASA Team and Bootstrap algorithms have been run without problems at the
National Snow and Ice Data Center DAAC for routine processing. The NASA Team algorithm
has also been run at the Marshall DAAC for processing the SSMI Pathfinder Data Set. Given
this history, we do not anticipate any computational problems with the AMSR hybrid sea ice
algorithm. Each of the two basic algorithms are currently running on PCs and SGI workstations
at Goddard; the AMSR hybrid sea ice algorithm will also be run on these PCs and workstations.
Even daily Level 3 products will not pose a problem. An estimate to process one month of SSMI
Level 3 data is of the order of 5 minutes on an SGI workstation. We do not anticipate
computational problems for any of the special products either, although the computational time
may be somewhat greater. All special products are currently produced on SGI workstations.

3.4.2 Programming/Procedural Considerations

Input to the hybrid AMSR sea ice algorithm will consist of Level 1C AMSR brightness
temperatures, latitude, longitude, time and a land/ocean flag. The standard output sea ice
products will consist of sea ice concentration, sea ice temperature and snow depth and will
include latitude, longitude, and a time stamp. The computer code and documentation will be
delivered to EOSDIS according to their guidelines. The algorithms will be coded in C and Fortran.

3.4.3 Quality Control and Diagnostics

Quality control of brightness temperatures will be done during the generation of the Level
1C products. The first step in the quality control of the sea ice products will consist of checking
whether or not the retrieved sea ice products fall within reasonable limits. Diagnostics will be
based in part on satellite sea ice climatology developed since the launch of the Nimbus 7 SMMR
in 1978. These data will provide a useful measure of the seasonal and regional values for sea ice
concentration and to some extent sea ice temperature. Quality control of snow depth will be
more difficult, because very little data exists on the spatial scale of AMSR footprints.

3.4.4 Exception Handling

Exception handling will consist of flagging missing data and land. Missing brightness
temperatures will result in setting a missing flag for the sea ice retrieval. The sea ice algorithm
will not be run over land. It is presumed that out−of−range brightness temperatures will be
handled in the generation of Level 1C products. Out−of−range retrievals will be handled within
the algorithm. Diagnostics for checking out−of−range data will be used in the algorithms to
determine whether the output should be flagged as unreasonable. In some cases, for example,
sea ice concentrations greater than 100% (within 3σ) will be set to 100% (within 3σ) and sea ice
concentrations less than 0 will be set to zero. Much larger discrepancies will be flagged as
unreasonable.

4.0 Validation Program

The objectives of the validation program are: (1) to obtain a quantitative measure of the
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accuracy of the AMSR−derived sea ice products; (2) to define problem areas or areas that need
improvements; and (3) to provide a means to evaluate how well each of the sea ice products
(both standard and special) meets the observational requirements specified by the EOS Science
Plan (1997). Three standard and three special products will be generated. Validation is
important because most of these products will be relatively new. The main emphasis will be the
validation of the hybrid sea ice concentration standard product not only because of its relevance
to the MTPE, as indicated earlier, but also because success in deriving the other two standard
products depends on the accuracy of this parameter.

The initial phase which is currently being implemented is to take advantage of existing
historical data. Field experiments in both Arctic and Antarctic regions have been undertaken
since the launch of the Nimbus−7 SMMR. We will take advantage of data from these programs
to validate, whenever possible, results from the final version of the algorithms. Historical high
resolution satellite data (Landsat, Spot, Mos, etc.) will be used to extrapolate values from point
measurements. Historical passive microwave data (SMMR, SSMI) and also TMI, and Adeos−2
AMSR will be used to test the algorithms. Furthermore, radiative transfer modeling results will
be used to improve our understanding of the physics of the emission from sea ice and the effect
of the intervening atmosphere. Such information is needed to assess limits in the accuracy of
some of the products. It is highly desirable that both pre− and post−launch aircraft missions be
conducted. A suite of microwave radiometers that measure radiances at frequencies and
polarizations close to those planned for AMSR will be useful. An example of such system is the
NASDA built Airborne Microwave Radiometer (AMR). An aircraft AMSR simulator will be
complemented by an infrared system to measure surface temperature, the polarimetric SAR to
help discriminate surface types, especially in the perennial ice regions, and a digital camera to
evaluate surface properties and overall characteristics of the ice cover. The specific areas and
times covered would include those where and when the PR−GR and the temperature corrected
Bootstrap algorithms have significant differences. In addition, data is needed to improve
ice−weather discrimination at the ice edge and in marginal ice zones. Such missions will be
coordinated with validation programs for other AMSR parameters. The timing of the aircraft
underflights will also be done to enable accurate comparative analysis with data from SSMI,
TRMM TMI and ADEOS−2 AMSR instruments.

A NASA sea ice validation program for the DMSP SSM/I was completed in 1991 and may be
used as a guide for the sea ice data validation plan for the AMSR (Cavalieri, 1992; Cavalieri,
1991; Cavalieri et al., 1991; Steffen and Schweiger, 1991). Other validation programs include a
near simultaneous aircraft, submarine, and ship experiment over the Arctic (Comiso et al., 1991;
Wadhams et al., 1992) and several cruises in the Antarctic (Comiso et al., 1989; Grenfell et al.,
1994). Many major compaigns in the Arctic regions have also been undertaken (e.g., MIZEX
east and west). Results from sea ice validation studies since the launch of the Nimbus 7 SMMR
has been summarized (Cavalieri, 1992). We will take advantage of experiences from these
programs to optimize the likelihood of success in the new validation missions. Data from the
aircraft missions will be supplemented by data from Landsat, which has become a NASA system
again and will be less expensive, and other high resolution satellite systems. The Landsat data
and other systems will enable extrapolation of data obtained from the aircraft tracks to much
wider area. The launch of the 40 channel MODIS system aboard EOS−AM will also open an
oportunity to investigate new information about the ice cover that can be derived from such a
system. Since MODIS will also be available aboard EOS−PM, the data will be used
synergistically with AMSR data to optimize the accuracy of products derived from the latter. The
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uses of Radarsat (and other satellite SAR data) and NSCAT (and other scatterometers) data for
ice applications have not been well established but SAR is expected to be provide some critical
information needed to verify ice type discrimination results while SAR, NSCAT, and MODIS will
be useful for surface type classification.

A list of standard and special products and a summary of data to be used to validate each of
them is given in Table 3. The list provides examples of systems that would be most suitable for
validating the different parameters.

TABLE 3. Validation data sets for the proposed AMSR sea ice products.                   
_______________________________________________________________
Sea Ice Product Validation Data    

Standard   

Sea Ice Extent and Concentration   ADEOS − II Gobal Imager (GLI) 
                                                                LANDSAT MSS & TM; NOAA AVHRR
                                                                RADARSAT; MODIS; 

       Aircraft underflights 

Sea Ice Temperature                      ADEOS − II GLI; EOS−AM MODIS;
                                                                AVHRR; Climatology; Buoys; Field
                                                                and ice station data, 

       Aircraft underflights
 
Snow Depth on Sea Ice                 In−situ snow depth measurements
                                                                Remotely sensed snow depth
                                                                from aircraft.

Special                              

Ice Displacement Vectors                       Buoys, NSCAT, AVHRR 

Sea Ice Type                                 ADEOS − II GLI; LANDSAT MSS &
                                                              NOAA AVHRR; RADARSAT; MODIS;

       Aircraft underflights 

Surface Classes                            ADEOS − II GLI; LANDSAT MSS &
                                                               NOAA AVHRR; RADARSAT; MODIS;

         Aircraft underflights
_______________________________________________________________
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